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Abstract -While the early diagnosis of hematopoietic system
disorders is very important in hematolgy, it is a highly complex
and time consuming task. The early diagnosis requires a lot of
patients to be followed-up by experts which, in general is in-
feasible because of the required number of experts. The
differential blood counter (DBC) system that we have developed
is an attempt to automate the task performed manually by
experts in routine. In our system, the cells are segmented using
active contour models (snakes and ballons), which are initialized
using morphological operators. Shape based and texture based
features are utilized for the classification task. Different
classifiers such as  k-nearest neighbors, learning vector
quantization, multi-layer perceptron and support vector
machine are employed.

Keywords Differential blood counter, cell recognition, active
contours, snakes, neural networks, support vector machine

[. INTRODUCTION

An important issue in hematology is the early diagnosis of
hematopoietic system disorders (HSD). Since HSD are
critical, examination requires expert evaluation and is a
highly complex and time consuming task. White cell
composition of the blood reveals important diagnosis
information about the patients as well as patient follow-up.
The hematologist requires two types of blood count for
diagnosis and screening. The first one is called the Complete
Blood Count (CBC) and the second one is called the
Differential Blood Count (DBC). CBC could be done by
instruments called cytometer and could successfully be
performed automatically. On the other hand, DBC is more
reliable but currently it is a manual procedure to be done by
hematology experts using microscope. In DBC, an expert
counts 100 white blood cells on the smear at hand and
computes the percentage of occurrence of each type of cell
counted. The results reveal important information about
patient’s health status. Apparently, DBC is a time consuming
task that requires expert examination.

Our automated differential blood counter system is an
attempt for performing DBC automatically by the aid of
statistical and neural network based classification methods.

The process of counting blood cells on smear images requires
four steps. These steps are acquisition, segmentation, feature
extraction, and classification.

Very few methods are presented in the literature for the
segmentation step. Morphological preprocessing followed by
fuzzy-patch labeling is proposed in [1] for locating the white
blood cells. Then, the nucleus centers are detected by
variance map and it is followed by a snake-based
segmentation. In [2], we had used contour following to
segment the cell groups and then used the curvature to
seperate the overlapping cells. In [3], we combined snakes
with balloons for segmenting cells directly. In other related
papers, segmentation is done manually.

In feature extraction step, intensity-based features are used in
common [4-6]. However, some authors prefer to use texture-
based features, and/or shape descriptors [4, 5].

For the classification, neural network based classifiers are
used in [2,5,6]. Due to the fuzzy nature of the decision
process in counting blood cells, a dedicated neural network
counter is constructed in [5]. In this work, the authors state
the fact that the results of a counting session could be
different between trials about 15%.

In order to conduct an automated counter, methods
performing well for segmentation, feature extraction, and
classification are needed. In our current system, segmentation
is done by morphological preprocessing followed by the
snake-balloon algorithm.

Several types of features such as intensity and color based
features, texture based features, and shape based features are
utilized for a robust representation of the objects.

For classification we employed k-Nearest Neighbors (k-NN),
Learning Vector Quantization (LVQ), Multi-Layer
Perceptron (MLP) and Support Vector Machine (SVM).

The organization of the paper is as follows: In section 2, the
blood cell image database that we collected and the cell
categories that we considered are explained. In section 3, the
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architecture of the system is given. In section 4, the
segmentation procedure is presented. Section 5 focuses on
feature extraction and types of features used in the process.
Then in section 6, the classification results for different
methods are explored. The last section concludes the study.

II. BLOOD CELL IMAGE DATABASE

All the cell classes are evolved from a single young cell
produced in bone marrow due to different bio-chemical
reactions. In that sense, cell classes form a family tree.

The following cell classes are important in terms of DBC. In
bone marrow: Erythroblast, Lymphoblast, Metamyelocyte,
Monoblast,  Myeloblast,  Myelocyte, Plasma  cell,
Proerthroblast, Promyelocyte, Band, and Megakaryocyte. In
peripheral blood: Neutrophil, Basophile, Eisonophil,
Lymphocyte, and Monocyte. It should be noted that
eritrocytes, which appear in peripheral blood, have no
importance on DBC.

Band Lymphocyte

Eisonophil

<

Metamyelocyte Monocyte Myeloblast

Myelocyte Neutrophil Normoblast

Plasma

Proerythroblast Promyelocyte

Fig 1. Samples of white blood cells

There are two mediums in which the white cells can be
analyzed. Bone marrow is the production and maturing place
for the cells. After the cells reach certain maturity level, they
are released to blood to perform certain tasks. Detection of

immature cells in peripheral blood signals a problem in an
individual’s health status [7].

Our blood cell image database has been constructed at the
hematology laboratory of Hacettepe University Hospital,
Ankara. The database contains 108 images of 258 white cells,
most of them being bone marrow images and these cells are
classified manually.

Not all the sixteen classes listed above, but twelve of them
(given in Figure 1) are considered in this study. The other
four classes are not taken into account due to insufficient
number of samples in the database. It should be noted that,
the cell images given in Figure 1 are scaled to have
approximately the same width and height for display
purposes. Actually, this is not the case in the microscopic
images and cell area is a component in feature vector, as it
will be explained in section 5.

III. SYSTEM ARCHITECTURE

The architecture of our system is as follows: As the input
device supplies an image, cell segmentation procedure is
carried out. Segmentation yields to a number of cell contours
and their nuclei. Then, the feature extraction engine analyzes
each segmented cell and its nucleus to form a feature vector
from color, shape, and texture features. Feature vectors are
stored to constitute the dataset. Training and testing sets are
chosen to be mutually exclusive. Classifiers are constructed
by using the training set as input to the given classification
methods. After a classifier is constructed, test images are
analyzed and each object in these images are labeled by the
classifier according to their feature vectors.

IV. SEGMENTATION

In order to locate the cells for feature extraction, we have
used active contour models, widely known as snakes. Method
of snakes is successfully used in detecting contours of the
objects in multi-valued images (i.e. grayscale, color, volume
data, etc) [1], [8-16].

An active contour is an energy-minimizing curve defined as
follows:

1
e = [ B 0(0) + E i (W(0))dt
0

[Eint (D) + Ejpage W) + Ep, (W2 ))]dt
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where
E image = WlineE line + WedgeE edge + Wierm Eterm
Eline = l(x,y)
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Behavior of the snake is controlled by adjusting Wiine, Wedge,
and Wi, The termination energy is not used in this work.
Eomer could be used for application specific purposes, e.g., it
helps snake to be able to inflate in the case of balloons [9].

One important drawback of the original snake algorithm is
initial positioning. Several methods are proposed for
minimizing the effect of initial positioning, such as
segmented snakes [15], dual active contours [12] and
gradient vector flow snakes [11]. Convexity analysis of
energy minimization is done in [16].

In this work, initial positioning is performed by making use
of digital morphology. The algorithm for finding initial
position of the snake is outlined below:

1. Convert the color image to intensity image;

2. Sub-sample intensity image;

3. Find a threshold that yields a mask containing cell
nucleuses;

4. Perform closing to smooth out the mask;

5. Perform distance transform and find relative maxima on
the mask;

6. Label and merge the maxima regions;

7. Compute the center of mass of merged regions that yields
the initial position for the snake.

L .

(e) Initial Contours (f) Final Contour;

Fig. 2. Segmentation steps.

After the initial positions are found, snakes are put on the
image and minimization procedure is performed. Upon
convergence, the interior of each contour is taken as a white
blood cell. For finding nucleus region(s), the constraints of
energy functional are changed. Initial snakes are chosen as
the contours of the cells found in the previous step. This
procedure is demonstrated in Figure 2. The details of this fast
snake-balloon method that we have developed for
segmentation of cells can be found in [3].

It should be noted that, in the segmentation procedure, only
white blood cells are segmented and the other objects,
including erythrocytes, are eliminated.

V. FEATURE EXTRACTION

Since the chosen features affect the classifier performance
much, deciding on which features to be used in a specific
data classification problem is as important as the classifier
itself. In this work, we tried to reflect the rules and heuristics
used by the hematology experts in the selected features.

Our features mainly fall into two categories: shape based
features and color/texture based features.

For classifying cells successfully, hematology experts
examine the shape of the cells and nuclei. To reflect this
information in our feature vectors, several tools such as
moments and affine invariants are taken from the literature
[17,18] together with some additional features that are
heuristically picked by analyzing the reasoning of
hematology experts. These additional features include the
areas of cell and nucleus; ratios of nucleus area and perimeter
length over cell area and perimeter length, respectively;
compactness and boundry energy of nucleus; nucleus shape.

As color and texture features, mean and standard deviation
for cell, cytoplasm, and nucleus in CIE (L*,a*,b*) color
system and also histograms in Hue-Saturation-Value (HSV)
color system are used [19].

Totally we have used a 57 dimensional feature vector. The
details related to these features are presented in [4]

V1. CLASSIFICATION

The classification algorithms that we tested on our blood cell
image database are k-Nearest Neighbor (k-NN) [19], Linear
Vector Quantization (LVQ) [21], Multi Layer Perceptron
(MLP) [20] and Support Vector Machines Machine (SVM)
[22-26]

The classification accuracy of the methods mentioned above
are computed by selecting random non-intersecting training
and test sets, such that the training set consist of 70% of the
dataset, the number of samples from each class being



proportional to their number in the whole dataset, and the
remaining %30 of the dataset is taken as the test set. For each
method, the experiment is repeated with 100 random training
and test sets. The best performances of the methods in these
100 experiments are as follows:

Training accuracy is 82%, 94%, 99% and 100% for k-NN,
LVQ, MLP and SVM, respectively. The corresponding
performances on test sets are 81%, 83%, 90% and 91%.

VII. CONCLUSIONS

In this paper, the segmentation, feature extraction and
classification phases for the automated DBC system that we
developed is presented. The performance of the system is
encouraging. Currently, we are working on evaluating
classifier combinations such as committees of networks [20]
and stacked generalization [27] to improve the robustness of
the classification step.
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